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An understanding of the funda,mental mechanisms involved in the interaction

between bubbles and vortices is relevant to many importa,nt engineering applica-

tions. Classical assumptions of bubble sphericity and decoupling between bubble
and flow behavior prevent one from capturing some essential elements of the in-
teraction. Bubble motion and deformation are seen to be of great importance for
most bubbles in the size spectrum. In this chapter, studies on bubble capture by t
vortex, bubble motion and deformation during that capture, and bubble behavior
once the bubble is on the vortex axis are described. FIow field modifications once
the bubble is on the vortex axis are also briefly considered. The most promising

approach appears to consist of a coupling between a boundary element method to
describe the bubble behavior, and a viscous flow solver to describe the basic flow.

XVIII.L Introduction
The simultaneous presence of bubbles and vortices is typical of many high velocity
turbulent flows. For example, in marine propellers at high rotational speeds, the
helical tip vortices formed at the tip of each blade 'cavitate' and become sites of
bubble concentration and fluid vaporization into what is termed 'tip vortex cav-
ities' (see photograph in Figure 18.1.1a). This phenomenon is addressed in more
detail in Chapter XVII. While for practical reasons engineers tend to superficially
address the fundamental problem - by stating, for example, that cavity formation
in the vortex-will occur if the pressure on the centerline drops in the monophase
model below the.liquid vapor pressure - a closer look at the fundamental pro-

cesses at work reveals that the actual phenomenon is rather very complex and
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( ' ) (b)

Figure 18.1.1 Practical examples of bubbles and vortices. a) Tip vortex cavitation on a propeller
(Chahine et aI. 1993b), b) Vortex cavitation in the separated region behind a cylinder. Courtesy
of J.Y Billard, Ecole Navale, Breat, France.

very poorly understood. Questions such as (How 
does a microscopic bubble be-

have in the presence of the vortex?' and 'How and to what extent does the presence
of bubbles modify the flow field of the vortex?' have, at this point, only prelimi-
nary ansvrers or no answers at all. The interaction between bubbles and vortex
flows is in fact of relevance to several fluid engineering problems. Important ex-
amples include cavitation in shear layers, boundary layers, tip vortex cavitation,
bubbles ia the shear layer of submerged jets, cavitation behind orifices, bubbles in
separated flow areas (see Figure 18.1.1b), microbubbles in boundary layers, etc. In
the above mentioned flows, bubbles are held responsible for dramatic efects such
as noise generation, materials erosion, and bubble drag reduction. These effects,
experimentally observed and widely accepted, are not yet completely understood.
Therefore, a satisfactory control of the deleterious effects is not presently possible.

This chapter will try to highlight the problems, present some proposed explana-
tions and methods for solution, and provide some preliminarily confirmed results.
However, it does not claim to answer all the complex and presently unanswered
questions, and likely fails to address some of the problems that will appear to be
important in some configurations in future research.

XVfII.L.1 Mechanistic Description

When a bubble approaches a region of high vorticity in a liquid, it is accelerated
towards the center of the vortex (see discussion in Chapter I). The asymmetric
pressure field pushes the bubble towards the vortex axis while it is swirling. On its
path the bubble experiences a decreasing ambient pressure which can lead to an
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increase in the bubble size. Simultaneously, since the non-uniformity of the pressure
field around the bubble increases with proximity to the vortex axis, bubble shape
deformation increases. An explosive bubble growth is provoked if the pressure in
the vortex field drops below the bubble 'critical prc,ssurz,' p". For a bubble of radius
ro in static equilibrium when the ambient pressure is Po, this pressure is defined
as the pressure below which the bubble cannot be in equilibrium. If one assumes
the gas in the bubble expands isothermally (see $4.1, Equation 18.4.3), one may
show that this pressure is determined byl

P c = ( 1 8 . 1 . 1 )

is the 'critical rod,ius' given bywhere o is the surface tension parameter, and r.

P"-#

. c - (a-I s':
L2"

P,*T)),,, ( 1 8 . 1 . 2 )

where P" is the liquid vapor pressure (Hammitt 1980).
Over the last decade several investigators have addressed the phenomenon of

bubble capture by r vortex (Bovis 1980a,b; Latorre 1982; Ligneul 1989; Ligneul
and Latorre 1989). However, these studies made the strong simplifying assumption
that the bubble remains spherical as it changes in volume. In addition, they did
not consider vortex flow modification by the presence and behavior of the bubble.
More recentlS Chahine (1990a,b) considered a broader approach where bubble
deformation and motion were coupled while neglecting flow field modification by
the bubble presence. Chahine showed that the pressure gradient across the bubble
can lead to a significant departure from bubble sphericity, and suggested that
the deformation and later splitting of the bubble during its motion towards the
vortex center is, in addition to its volume change, the main source of noise in
vortex cavitation. This bubble deformation appears to explain why tip vortex
noise at cavitation inception occurs very close to the blade (Higuchi et al. 1989),
and is in agreement with recent observations by Maines and Arndt (1993) about
bubble capture in tip vortex cavitation. We will consider the details of the broader
approach in the following sections.

One can distinguish three phases in the interactive dynamics of bubbles and
vortices: a) bubble capture by the vortex, b) interaction between the vortex and an
initially quasi-spherical bubble on its axis, c) dynamics of elongated bubbles on the
vortex axis. After some phenomenological and order of magnitude considerations of
the phenomena at hand, we will consider each of the three phases and the method
of solution proposed for their study.

r Obtained by considering Equation (18.4.4), writing y-fnr! and Vo=frrN, and solving for
the 'ninimum of the function Pr,(r).
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XVIIT.2 Order of Magnitude Considerations
In order to analyze the problem of bubble capture aad behavior in a line vortex, let
us consider as arr example the Rankine vortexflow field described ia $I.1. We adopt
a notation consistent with that section, denoting I as the vortex circulation, md
u0 as the only non-zero velocity component. However, in order to avoid potential
confusion with the bubble radius definitions later, we will use -8" for the radius of
the viscous core (.R is used in $I.1). For distances r smaller than B" the flow has
a solid body\otation behavior (velocities vary as r), while for distances r larger
than rt the flow behaves as in an ideal inviscid irrotational vortex (velocities \rary
as Llr). The expression for the velocity is given by Equation 1.1.15. For such a
flow, the pressure field is known and its value p(r) is given by Equation 1.1.17. A
key parameter which appears in (1.1.17) is the 'swirl patwmeter,' O, defined as

^_ le(#) '
i l& -  -

Pe

O characterizes the intensity of the pressure drop due to the rotation, normalized by
the a,mbient pressure, poo. To illustrate the importance of this parameter, we divide
(1.1.17) by p* to obtain the following normalized expressions for the pressure and
the pressure gradient:

( lE .2 . r )

(1E .2 .2 )

(ra.z.s)

p(r) -  L-g^
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r - ;  a n d  F O ) : *

Note that the pressure on the vortex axis is (1 - 2O) and goes to zero when O
approaches Ll2.

As seen in Figure 1.1..5, the pressure gradient steepens in the inviscid region
when the viscous core is approached, achieves its maximum at 7 = 1, and levels of
in the viscous core close to the vortex axis. If a bubble is subjected to the pressure .
field shown in the figure, it will experience a higher liquid pr"rroru on its right side
than on its left side, the difference being greater for larger bubbles. Similarly, the
bubble is 'gheared,' since fluid particles on the bubble/liquid interface experience
difierent velocities depending on their location on the bubble. The type of shearing
action depends on the position of the bubble relative to the viscous core/inviscid
fluid boundary- rt". If the bubble is fully immersed in the inviscid region of the
flow, fluid particles on its left side will experience larger velotities, while if it is
folly immersed in the solid body rotation region of the flow, fluid particles on its
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right side will experieace larger velocities. The most complex situation is when the
bubble is pa,rtly in the viscous core and partly in the inviscid region. In that case, it
is expected that the bubble behavior will be vortex flow model dependent, because
the sharp separation between the two regiois in the mathematical representation
does not exist in the physical reality.

Due to the pressure and velocity gradients, the bubble is accelerated toward the
axis while growing and deforming. Therefore, depending on its size and position,
the bubble experiences a pressure variation along its surface and a slip velocity
relative to the surrounding fluid. This results in some degree of bubble shape
deviation from sphericity. The importance of this deviation is a function of the
relative orders of magnitude of the pressure gradient, the bubble wall acceleration
due to volume change, and surface tension forces.

An ewluation of the bubble wall acceleration can be obtained from a charac-
teristic bubble radius, -85, and from the Rayleigh time, ra. The Rayleigh time is
the time needed for an empty bubble to collapse from its radius -Ro to 0, under
the influence of the pressure outside the bubble (Rayleigh 1917). For the present
problem let's take the outside local pressure at r = B" as the characteristic pres-
sure. (F - 1- O) is then the typical local ambient pressure, and the Rayleigh time
is:

(1E .2 .4 )

The characteristic bubble wall acceleration, Jstout;- at r = .R" is then:

-fgtouthr ^, Rb ^, p-(1-- O) 
(1E.2.5)t r = R " -  " h -  p 6 t

This value is to be compared with the acceleration force Js?odi.,',t due to the
pressure gradients expressed in (18.2.2):

L A P-yg''die',t = 
i 0,

2QP*
(18 .2 .6 )

be ernluated, for instance at

'fgtadieillr=R. 3
QR"

The ratio between these two accelerations can
7 : R", to yield the simple expression:

t "
rR= "r /^G=_o)

'fg"odienntl Zn,
|  - -"lg"outth 
lr=R. n"

o
1 - O

(1s.2 .7)

This expression highlights the relative importance of the characteristic bubble
size R5, and the viscous core size .R". Keeping the surface tension parameter the
sar"'e (see discussion on the Weber number below), the larger the ratio (18.2.7)
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is, the more important bubble deformation will be. This rernarlc has important
irnplications concerning scole effects whete Ru ond R" do not increase in the same
prcportion between scale and model, since in most practical cases bubble distribu-
tions and sizes are uncontrolled and typically cannot be scaled much, while the
size of the vortical regions depends on the selected geometry and velocity scales.

The ratio (18.2.7) is only an indication of the relative importance of bubble
growth and slip forces at a given position. The relative importance of these com-
peting forces changes during the bubble capture process. For instance, the ac-
celeration of the bubble toward the vortex axis increases with its proximity to
the viscous core while the growth rate tends toward a constant value (decreasing
pressure gradient). This indicates that strong deformation becomes predominant
relative to volume change when either the bubble is very close to the axis or the
vortex circulation (the "swirl parwmeter", O) becomes large.

Another important physical factor which afiects bubble shape is the surface
tension. A normalized value of the corresponding pressure, a Weber number, can be
constructed by combining the surface teusion (o) with either the pressure diference
between the inside and the outside of the bubble, or the amplitude of the variations
of the local pressures (pressure gradients) around the bubble. The first number
W.r, is given by:

(18 .2 .E)

where p; is the pressure inside the bubble. The second number, W"r, is given by:

,rr n; - P*(L - CI)
Y r e L  

" l n b

W"":'rffi (18.2 .e)

which can be written for r : Rci

( I E . 2 . 1 0 )

For small values of either of these two numbers, surface tension forces are pre-
dominant and prevent bubble distortion and deviation from sphericity. Expression
(18.2.10) shows that this is possible only if fl is small and/or if .Ro is much smaller
than R". Therefore, as for the discussion of the acceleration forces, one expects
larger bubble deformations for stronger vortex circulations and larger bubbles.

XVIII.S Bubble Capture by a Vortex
Despite several significant contributions to the study of bubble capture in a vor-
tex, to our knowledge no complete approach has yet been undertaken. While the
overe.ll approach, in terms of the investigation of the bubble motion, has several
similarities to the problem of the interaction between vortices and solid particles

w",:r"(ffi) (#) :w",t+"j *
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(see Chapter XIX), bubbles, unlike so[d particles, will deform and change volume
while interacting with the vortex flow field. The complexity of the problem has
led the various contributors to neglect one or several of the factors in play, and
therefore to only investigate the influence of a limited set of parameters. The first
approaches to the problem were attempted independently at about the same time
by Bovis (1980a), and Latorre (1980). While both studies accounted for volume
change during bubble motion, the basic assumptions and effects taken into account
were quite difierent. Bovis (1980a,b) considered the case where the flow velocities
iir the vortex flow are large enough to justify the assumptions of inviscid potential
flow. This simplification, wlid for instance in tip vortex cavitation where very la^rge
tangential velocities come into play, and when the bubble is not too close to the
vortex axis, allows one to consider other important effects. For instance, one can
then consider, in a consistent fashion, important phenomena such as the modifica-
tion of the vortex flow by the presence of the bubble and the volume chairge and
shape deformation of the bubble (Duraiswarni and Chahine 1991). O" the other
hand, Latorre (1980) and in subsequent studies (Ligneul and Latorre 1989) con-
sidered real fluid effects to determine the bubble motion equation, but neglected
bubble shape deformation and modification of the flow caused by the bubble. They
coupled these equations with a spherical bubble dynamics model to deduce noise
emission in tip vortex cavitation.

Iu the potential flow approach, the expression of the modified flow field due
to the presence of a spherical bubble is based on Weiss' theorem (Milne-Thomson
1968). In a spherical system of coordinates centered at the sphere center, if the
undisturbed potential flow in the absence of the sphere of radius o is iDs(r, 0, $),the
velocity potential of the modified flow due to the presence of the fixed sphere is
iD(r,0, /) given by the equation:

Q(r ,0 ,6 ) :  iDo ( r ,  O , i l  + :

oo(r, 0, d) = 
fi t^o-t

oz /12

I
0

( 1 8 . 3 . 1 )

(18 .3 .2 )

Using the notation in Figure 18.3.1, the velocity potential of the vortex flow is:

r s inds in /

C ( t ) + r s i n 0 c o s /

where I is the vortex circulation and ((t) is the instantaneous distance between
the vortex and the bubble center.

Similarly, the velocity potential of the flow due to the bubble's radius variation
in time, 3 1t;, it

Oa(t ,  0 ,d)  = (ra.s.s)
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Figure 1E.3.1 Sketch of the geometric quantities involved in the analytical description of bubble
capture in a vortex line.

where o indicates time fifferentiation. ffwe account for arelative velocity (V - Vn)
between the spherical bubble and the fluid, the modified bubble velocity potential
becomes:

iDa(r, 0,6) =
o'(t) 3 (t) -#".(v-vn) (ra.s.a)

where \/(t) and Vg(t) are the instantaneous fluid and bubble center velocities.
The absolute velocity potential in the fixed coordinate system attached to the
vortex, tDo, which accounts for bubble motion and radius \ariations, is then:

(ra.s.r)
0

The equation of motion of the sphere can now be obtained by using Bernoulli's
equation and integrating the pressure over the surface of the sphere. The resulting
force leads to the following dynamic equation:

(1E.s .6)

where p a,rrd pb are the liquid and bubble content density, a the bubble rafius, n
the normal vector to the bubble surface, and dVg ldt the bubble acceleration. The
evaluation of (18.3.6) in the general case is rather complex. However, a simplified
asynptotic expression can be obtained when the radius of the bubble is small
relative to the distance from the vortex anis,

t"*n,#:nl! [*-lty] ",
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The two nondimensional components of the acceleration are then:

' - f f < r

d W  W u . ; ( s  2 W \
T  = _ T - " \ T _  

d  )

79t

(18 .3 .7 )

(re.s.ro)

( u ,  r \  M  _ _ _ +  * ( s * 1 \ W _ T n 1 '( . ;* ; )1;  z.^-  \p i l t - ;  (1E'3 '8)

(18.s.e)

where the velocities are normalized by the tangential velocity at the location (o of
the center of the bubble at t = 0, and time by the ratio between the distance (o,
and that characteristic velocitn

Similarly, (itnormalizedwiththeinitialposition, C =(l(o. Notethat tr/6o - d(ldt,
and that for a bubble eol p is negligible. The third component along { is obviously
zero due to the symmetry of the problem (see Darrozes and Chahine (1983), for
further discussion and the derivation of the above equations).

In the studies of Ligneul and Latorre (L989) the bubble equation (18.3.6) is
replaced by an empirical force balance equatioa first given by Johnson and Hsieh
(1e66) :

+- r(v-., ,) :  -ry +*rv - vnl ( 1 8 . 3 . 1 1 )

where Ca is a viscous drag coeffi.cient. The first two terms on the right hand side
come from inviscid flow considerations and are therefore included more formally
and more accurately in Equation (18.3.6). The first term on the right results from
the integration in (18.3.6) of the third term in Equation (18.3.5). It reflects the
fact that any slip velocity between the bubble center and the surrounding fluid
increases with an increase of the bubble wall velocity and a decrease of the! bubble
radius. Therefore, the bubble cenxer decelerates during bubble growth and accel-
erates rapidly during the bubble collapse where both & and o-1 are very large.
The second term is in fact an acceleration term of the relative or slip velocity,
(V - Vn), whose expression has been often debated in the multiphase flow com-
munity (van Wijngaarden 1980). The third term is a viscous drag term where
the drag coeff.cient Ca depends on the Reynolds number of the relative flow, ,R.r.
Ligneul and Latorre (1989) used the expression:
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( 1 8 . 3 . 1 2 )

(re.s.rs)

with

(1s .3 .14)

Both approaches (Bovis 1-980a; Latorre 1980) used the spherical bubble dynam-
ics equation - known as Rayleigh-Plesset Equation (Plesset 1948) - to determine
the bubble radius variation with time:

- 2L (ra.s.rr)

In (18.3.L5) t" is the dynamic viscosity, Pro is the initiat gas pressure with & the
polytropic gas constant, P" is the vapor pressure, and 7 is the surface tension
coeffcient. Assumptions leading to this equation are described further in $4.1.

XVfII.3.1 Capture Time
In order to get an idea of the characteristic time for bubble capture by the vortex,
let us consider equations (18.3.8) and (18.3.9). If one considers - for an order of
magnitude evaluation - the case where the rate of change of the bubble volume is

l6v l -  ( r&*v&+rf )+

I r , : *  t - # ' _ - c+ l  c<R"
I n : S  t = * - e + l  e > n .

a ("8 *le') - art : -P*(t) + P, * ,," (+)'r

ca = 
#tt 

+ o.LTT R3;u' + 2.6 x ro-4a];3s]

R.r:ryd

+:(v&-8v,.[:-ry] ffi^(f)
e+:-2i,r*+3(l* - ry]

+=-32[* .ry]

Other authors add a memory term (Basset term) which accounts for the full history
of the slip velocity through an integration between 0 and t. Based on equation
(18.3.11) the equations of motion of the bubble become for a Rankine vortex of
viscous core radius, -R.:
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negligible relative to the other terms, then the two equations of motion degenerate
to:

^4dT -
dt # *'+

where

T(_4=
The capfure time, 7", for a
therefore approximately

dVw VwVu,
-

d t (

J v t - e + 1
e 2

(18 .3 .16)

( 1 8 . 3 . 1 7 )

( 1 E . 3 . 1 e )

fluid (td"(o) : 0) is

Equations 18.3.L6 can be integrated to give the position of the non-deforming
bubble relative to the vortex ucis as a function of time. Using d( ldt as an inter-
mediary variable (expressing dldt as dld(.de,ldt), and assu-itg that the bubble
center has no initial radial velocity (a,o = 0), while the initial tangential velocity
is uso, Equation 18.3.16 leads to:

W(t)=-f f  and f( i ) -  [ t*  (m'-Lrr) i ' f '  ( rE.s.rE)

Equation 18.3.L8 is very instructive in terms of the motion of a particle of

density po in a vortex flow field. Depending on the sign t 
@2 

- 
e), the particle

will be attracted or repelled by the vortex. This term is the difference between
inertial (centrifugal) and pressure forces. For bubbles entrained in the flow field of
the vortex,r9o is between 0 and 1., and Mis very close to ], since polp < 1. As
a result

L + (ou' - 3)l '  >

bubble initially at rest in the

7 " : IT
V 5 or  ; - -Yg" ry'3

a2"

u

(18 .3 .20)

In fact, for a sphere, only viscous effects can be responsible for bubble entrain-
ment with the flow, since with the inviscid model Equation 18.3.6 clearly indicates
that only radial forces on the sphere are non-zero. In the presence of viscosity, fric-
tion forces enable entrainment of the bubble by the fluid. The characteristic time of
viscous effects (the order of magnitude of the time needed for bubble entrainment
by the flow) is

T u - (1s .3 .2 r )

-t

l - 3 t '
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The qualitative nature of the bubble capture depends on the relative size between
T. an.d Tr.

H T" D Tu the capture time is long. Viscous effects are strong enough for
the bubble to be entrained relatively rapidly by the liquid and it starts

swirling around the vortex while approaching the vortex axis very slowly.

H T" K T, the opposite situation occurs: viscous effects are very slow to
take effect and the bubble is practically sucked into the vortex moving
towards its center in an almost purely radial fashion.

FinallS for T. N T, entrainment by the liquid and attraction towards the
center of the vortex occur on the same time scale. Therefore, the bubble
approaches the a:cis in a spiral fashion.

The above reasoning allows one to define a'aiolent captul radius' around the
vortex that is bubble radius dependent. A bubble of radius ao will be sucked in by
the vortex if it is within the radia.l distance Rqptur" :

R*??o.r" - ao (1E.3.22)

XVIII.A Numerical Study
Numerical methods presently offer the best hope for solutions to the bubble-vortex
interaction problem. Coupled with guidance from analytical, experimental and or-
der of magnitude or phenomenologid-al studies, a numerical approach can minimize
the number of physical phenomena that need to be considered. One of the numer-
ical methods that has proven to be very efrcient in solving the type of free bound-
ary problem associated with bubble dynamics is the Boundary Element MethoC.
Among others, Guerri et al. (1981), Blake et al. (1986, 1987), and Wilkerson (1989)
used this method in the solution of axisymmetric problems of bubble growth and
collapse near boundaries. This method was extended to three-dimensional bubble
dynamics problems by Chahine et af. (1988, 1989). We describe here the model,
then apply it to the case of bubbles in a vortex flow.

XVIII.4.l Bubble Flow Equations
Let us consider the cases where the presence of a bubble in the flow has significant
effects, that is cases where bubble volume variation in time is not negligible. For
spch cases the bubble wall velocity is large but subsonic. Therefore, one can neglect
viscosity and compressibility effects on the bubble dynamics. These assumptions,
classical in cavitation bubble dynamics studies, result in.a potential flow (velocity
potential, O) which satisfies the Laplace equation,

v 2 o - o (1E .4 .1 )

r\/l
2rv
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The solution must in add.ition satisfy initial conditions and boundary conditions
at infinity, at the bubble walls and at the boundaries of any nearby bodies.

At aII moving or fi.xed surfaces (such as a bubble surface or a nearby boundary)
an identity betweeu. fluid velocities normal to the boundary and the normal velocity
of the boundary itseH is to be satisfied:

V O . n : V g . n (18.4.2)

where n is the local unit vector normal to the bubble surface and Vs is the local
velocity vector of the moving surface.

The bubble is assumed to contain rroncondensible gas as well as the vapor of
the surrounding liquid. The pressure within the bubble is considered to be the sum
of the partial pressures of the noncondensible gases, Po , and that of the liquid
vapor, P". Vaporization of the liquid is assumed to occur fast enough that the
\rapor pressure remains constant and equal to the equilibrium vapor pressure at
the liquid ambient temperature. In contrast, since time scales associated with gas
diffusion are much larger, the amount of noncondensible gas inside the bubbles
is assumed to remain constant and the gas is assumed to satisfy the polytropic
relation,

PoVr : constant (1E .4 .3 )

where V is the bubble volume and & the polytropic constant. k = L for isothermal
behavior and ,t : cp/c, for adiabatic conditions.

The pressure in the liquid at the bubble surface, Pe, is obtained at any time
from the following pressure balance equation:

P 7 - P o * P s o - C o (18.4.4)

where Pno and Vo are the initial gas pressure and volume respectively, o is the
surface tension, C is the local curvature of the bubble, and V is the instantaneous
value of the bubble volume. In the numerical procedur" Pno and Vo are known
q u a a t i t i e s a t t - 0 .

XVIII.4.2 Boundary Integral Method for Three-Dimensional Bub-
ble Dynamics

In order to simulate single and multiple bubble behaviors in complex flow config-
urations, including the full non-linear boundary conditions, a three-dimensional
Boundary Element Method was developed and implemented by Chahine et al.
(1988-1991). The Boundary Element Method was chosen here because of its com-
putational efficiency. Considering only the boundaries of the fluid domain reduces
the dimensions of the problem by one. This method is based on Green's equation
which provides iD anywhere in the domain of the fluid (field points P) if the ve-

(+)-
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locity potential, Q , and its normal derivatives are known on the fluid boundaries
(points M), and if iD satisfies the Laplace equation:

where e:n : O is the solid angle under which P sees the fluid.

a = 4, if P is a point in the fluid,

a = 2, if P is a point on a smooth surface, and

a ( 4, if P is a point at a sharp corner of the surface.

If the fi.eld point is selected to be on the surface of any of the bubbles or on the
surface of the nearby boundaries, then a closed set of equations can be obtained
and used at each time step to solveforvalues of.0Al7n (or O), assuming that all
values of O (or 0A l0n) are known at the precefing step.

To solve Equation 18.4.5 numericallS it is necessary to discretize each bubble
into panels, perform the integration over each panel, and then sum up the contri-
butions to complete the integration over the entire bubble surface. To do this, the
initially spherical bubbles are discretized into a geodesic shape using flat, trian-
gular panels. This discretization of a bubble shape is described in Chahine et al.
(1988 and 1993c); Equation 18.4.5 then becomes a set of /[ equationr (lf is the
number of discretization nodes) of index i of the type:

[ f f _ a $  1  + a 0 r  L  I

U L- a";n{P I 
* *ar,( l  MP l) l  

a'  -  arQ(P)

N  /  ^ !  \  N
. i  /  d 9 ; \

Dl4 i?  )  - I (B ; ;o i )  -a re ;  i - r , . . ,N
j = \  

-  o n /  j = L

(ra.+.s)

(1E.4.6)

where ,4.;; and B;i arc elements of matrices which are the discrete equivalents of
the integrals given in Equation 18.4.5.

To eviluate the integrals in (18.4.5) over any particular panel, a [near variation
of the potential and its normal derivative over the panel is assumedz. In this'man-
ner, both iD and 0Q l0n are continuous over the bubble surface, and are expressed
as a function of the values at the three nodes which delimit a particular panel. The
two integrals in (18.4.5) are then evaluated analytically. The resulting expressions,
too long to present here, can be found in Chahine et al. (1988).

In order to proceed with the computation of the bubble dynamics, several quan-
tities appearing in the above boundary conditions need to be evaluated at each
time step. The bubble volume presents no particular difficulty, while the unit nor-
mal vector, the local surface curvature, and the local tangential velocity at the
bubble interface need further development. In order to compute the curvature of
the bubble surface a three-dimensional local bubble surface fit, f(x,U,z):0,is
first computed. The unit normal at a node can then be expressed as:

2 Obviously, higher order descriptions are conceivable, and would probably improve accuracy
at the expense of additional analytical effort and numerical computation time.
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with the appropriate sign choseu to ensure that the normal is
towards the fluid. The local curvature is then computed using

C - V . n
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(ra.a.z)

always directed

(ra.a.a)

To obtain the totd fluid velocity at any point on the surface of the bubble,
the tangential velocitn Vt , must be computed at each node in addition to the
normal velocity, Vn = 0A l}n n. This is also done using a local surface fit to the
velocity potential, iDt = h(r,y,z). Taking the gradient of this function at the node
considered, and eliminating any normal component of velocity appearing in this
gradient, gives a good approximation for the tangential velocity

V t : n x ( V i D 1  x n ) (18.4.e)

The basic procedure can then be summarized as follows. With the problem
initialized and the velocity potential known over the surface of the bubble, an up-
dated value of 0A l0n can be obtained by perfor*iog the integrations in (1S.a.5)
and solving the corresponding matrix equation L8.4.6. DAIDt is then computed
using a 'modified' Bernoulli equation (see Equation 18.4.17 below). Using an ap-
propriate time step, all values of iD on the bubble surface can then be updated
using iD at the preceding time step and DQ lDt,

(ra.+.ro)

In the results presented below, the time step, dt, was based on the ratio between
the length of the smaller panel side, l-;r, and the highest node velocity, Vrnor. This
choice limits the motion of any node to a fraction of the smallest panel side. It
has the great adnantage of constantly adapting the time step, by refining it at
the end of the collapse - where J-;* becomes very small and. Vrno* very large -

and by increasing it during the slow bubble size variation period. New coordinate
positions of the nodes are then obtained using the displacement:

d M = ( 1 8 . 4 . 1 1 )

where n and €6 &r€ the unit normal and tangential vectors. This time stepping
procedure is repeated throughout the bubble growth and collapse, resulting in a
shape history of the bubble.

# :# * (# '+v t )  vo

(#" *vet+v") at
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XVIII.4.3 Pressure/Velocity Potential Relation
Let us consider the case of a bubble growing and collapsing in a nonuniform flow
field ('basic flo.') of velocity Vo that is known and satisfies the Navier-Stokes
equations:

(ra.+.rz)

Also assume that in presence of the oscillating bubbles, the resulting velocity
field, given by V, also satisfies the incompressible Navier-Stokes equation:

+* vo-VVo - -]vro + zv2vo

X *v.vv:  - io"  + vY2Y

Both V and Ve also satisfy the continuity equation. We can now define bubble
flow velocity and pressure variables, V5 and P5, as follows:

(18.4.13)

(18.4.14)

(ra.a.rs)

V b : V - V q  P 5 - ,  
. O o

If we consider the case where the'bubble flow'field is potential3 :

Vo : VOo V2O5 - 0

aad subtract (18.4.L2) from (18.4.13) accounting for (18.4.15) we obtain

v v - " [ * - ; I vo l ' *vo .vo * +) 
=va x (v x vo) ' (ra.a.ro)

The assumption of a potential'bubble flot'implies that, even though the basic
flow is allowed to interact with the bubble dynamics and be modified by it, in
this model no new vorticity can be generated by the bubble behavior. Equation
l-8.4.16 can be integrated to obtain an equation similar to the classical unsteady
Bernoulli equation. For the particular case of the vortex line flow, Equation L8.4.LT
can always be written in cylindrical coordinates:

av
A ,  

- 0

In this case the Bernoulli equation is to be replaced by:

I Va l' -+ - constant in the aaial d,irection (1g.4.12)

t Thi" is obviously a simplifying assumption that needs to be removed in future research on
the subject. $8 presents a first step in that direction.

0 Q 0 , 1
E - '
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Accounting for conditions at infinitS the pressure in the liquid at the bubble
wil, P5, giver by (18.a.17), is related to iD6 and the pressure fie1d in the Rankine
vortex Ps by:

(18.4.18)

XVIII.4.4 Specialization to Axisymmetric Problems
In axisymmetric problems, the physical rariables (velocity potential and pressure)
a,re independent of the angular coordinate. Thus, the angular coordinate only en-
ters the formulation through the argument of the Green's function in Equation
l_8.4.5.

c(MP) - Ll I MP I (rs.a.rs)

The integration of these dependent quantities can be explicitly carried out. Let
C represent the trace in a meridian plane of the geometry under consideration.
Let r,0rz be the cylindrical coordinates of point M, a point on the boundary,
and without loss of generality we select the coordinates of P to be (ft,0, Z). The
integral equation (18.4.5 ) can theu be written

o(R,0,2): 1"66,4,fi(1,* cdl) dsnt - I"#, fo'" coro,,

In writing the above expression the fact that the normal to an ucisym*"rr!::"1::l
is independent of the angular coordinate has been used. Thus, integration over the
angular variable is reduced to ernluation of one integral

G(r ,O ,  z1 R,  Z)d0 -

which is nothing but the complete elliptic intesrut of the first kind,,"f#t;i;it)

(18.4.22)

l+ : + - # -j t .', Pf,, *,e uarr

The equation for the potential may then be written as:

2rQ(R, z) = - 1"6p, 4,f, (ry) d,*r + l"#r,, 4ffrd.s74
(18.4.23)

Further details of the method can be found in Taib (1985).

, : lo'* -+1,'"

4rR
* :  

A  
A - ( f i + r ) 2 + ( z - t ) ,
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XVIII.S Numerical Results and Discussion
XV[I.5.1 Validation of Numerical Codes

The use of the Boundary Element Method to study axisymmetric bubble dynam-
ics has been wlidated by the various authors quoted earlier. This has included
both comparisons with a quasi-analytical solution for spherical bubbles (Rayleigh-
Plesset Equation 18.3.15) and experimental rnlidation for the relatively simple
cases of spherical and axisymmetric bubble collapse near flat solid walls. Fig-
ures 18.5.1a and 1-8.5.16 show comparative results between the codes used below
(axisymmetric 2DynaFS and folly three-dimensional SDynaFS) and the semi-
analytical results.

Comparison of the results of the 3D code against previously published results,
for the relatively simple cases shown below, have been very favorable. For spheri-
cal bubbles, comparison with the Rayleigh-Plesset "exact" solution revealed that
numerical errors for a "coarse" discretization of a L02-node bubble (not shown in
the above figures) was about 2 percent of the achieved maximum radius, but was
very small, 0.03 percent, of the bubble period. The error on the maximum radius
was less than 0.14 percent for a discretized bubble of L62 nodes (320 panels), and
dropped to 0.05 percent for 252 nodes (5001anels). Comparisons were also made
with studies of axisymmetric bubble collapse available in the literature (Guerri et
al. 1981; Blake et aI. 1986, 1987), and have shown, for the coarse discretization,
bubble periods that differ from these studies by about L percent. Finally, compar-
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Figure 18.5.1 Comparison between Rayleigh-Plesset solution and the axisymmetric BEM code
2DynaFS and the 3D BEM code SDynaFS. Computations started with an initial bubble pres-

sure 584 times larger than the ambient pressure. a) Over bubble period. b) End of collapse.
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ison with actual test results of the complex three-dimensional behavior of a large
bubble collapse in a gravity field near a cylinder shows very satisfactory results
.(Chahine 1988, 1991).

XVI[.5.2 Bubble Capture

XVIII.5.2.1 Large Bubble Growth R^ate, Low Surface Tension Case
As expected from the mechanistic considerations of $1.1 and $1.2, numerical sim-
ulations using the fully three-dimensional numerical approach reveal the potential
for large bubble deformations during capture by a vortex. The numerical results
indicate that this is the case for a very wide range of bubble sizes and initial values
of the pressure difference between the inside and the outside of the bubble.

Figure 18.5.2 shows three-dimensional bubble behavior in the case where the ra-
tio between the pressure inside the bubble and the ambient pressure is significantly
large, p;lp* - 584.3. This would be the case where the bubble in equilibrium in
a high ambient pressure environment is suddenly subjected to the flow field of a
vortex, as for instance when a propeller tip vortex suddenly captures a cavitation
bubble (Maines and Arndt 1993; Green 1991). In a Cartesian system of coordi-
nates, OXYZ, the bubble is initially centered at (0,0,0), and the line vortex is
located parallel to the Z a,xis, at,T - X I &"ot = 2 (two times the maximum size,
R^o, the bubble would have if allowed to grow under the same pressure difierence
in an infinite medium). The core size considered here is 4R nor. With this geometry
the bubble center remains in the plane Z - 0.

Figure 18.5.2b gives a projected view of the bubble in the XOY plane at dif-
ferent instants. The observer is looking down on the XOY plane from very far
on the Z axis. The bubble is seen spiraling around the vortex axis (perpendicular
to the figure) while approaching it. At the same time, due to the presence of the
pressure grafient, the bubble deforms strongly and a re-entrant jet is formed di-
rected towards the axis of the vortex, thus indicating the presence of a much larger
dynamic pressure on the bubble side opposite to the vortex axis.

Figure L8.5.2a shows projected views of the seme bubble in the YO Z plane seen
from the OX axis. Some moderate elongation of the bubble is observed aloug the
axis of the vortex, as well as a very distinct side view of the re-entrant jet. This
rcsult is totally contrary to the cornmon belief that bubbles constantly grow during
their capture until they reach the o*is, and then elongate along the atis.

The motion in the XOY plane of two particular points on the bubble, A and
B (initialy located along OY), are shown in Figure 18.5.3. Also shown is the
motion of the midpoiat, C. While C seems to follows a path similar to the classical
logarithmic spiral, l, and B can follow more complicated paths, even moving away
from the vortex axis at some point in time for case (b) where the vortex axis was
initially at X - 1.
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Figure 18.5.2 3D bubble shapes at various times. Bubble initially at the origin of the Cartesian
coordinate system, and vortex at, X :2R ,.on. O : 0.4?4, p;/p- - 5E4.3, R.lR^on - 4. Projected
view (a) (top row) in the ZOY plane; (b) (bottom row) in the XOY plane.
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Figure 1E.5.3 Motion of the two points initially on axis OX, A and B,
between A and B, yersus times. {l : 0.474, p;lp* - 584.3, o.f Rn on - l.
left: X :2Rndlni (b) right: X : R,.d,n.
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XVIII.5.2.2 Small Growth Rate and Surface Tension
Figure 18.5.4 considers the influence of bubble size on bubble behavior during the

capture process. In all three cases shown in the figure a ratio between the pressures

inside and outside the bubble equal to one is cousidercd, p;f poo : 1. In all cases, the

viscous core rafius is chosen to be .R" : 2.2 rnrn, while the initial distance between

the vortex center and the center of each bubble is chosen to be G - 1.58c = 3.2
rwn. The dimensions shown are normalized rnlues with the initial bubble radius
for each case. The circulation in the vortex is chosen to correspond to a practical

value (f = 0.L52m2ls) for the case of a tip vortex behind a foil, such as that used

in the experiments described by Maines and Arndt (1993) and Green (1991). Three
bubble sizes are considered: L0 p,m, L00 p,m and L000 p,m. As expected, bubble

deformation increases with the bubble size. The deformation is small for ao-Lg p'7n,

becomes very significant for ao-L00 1.tm, and is extremely important for ao:1000
p,m. In all cases, the bubbles, while remaining in the inviscid region, are seen to

be sheared very strongly by the flow. The smaller bubbles appear to deform in the

expected way in a shear flow. The computations were stopped when significant
bubble shape deformations necessitated finer time steps, The larger bubble case
(ao:1000 prn) shows extreme bubble elongation and wrapping around the viscous
core region.

XV[I.5.3 Multiple Bubbles

One of the key questions that one needs to address in bubble/vortex interaction
practical studies is how a distribution of bubbles modifies the flow field in a vortex

( r )  (b)  ( . )

Figure 18.5.4 Bubble contours at various times. f - 0.152?*' /t, p;/p* = l, a. = 2.2mm, vortex
located at X : 3.2mtn, with ao : r) 10pm, b) 100prn, c) 1000pm.
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Figure 13.5.5 Simulation of the dynamical interactions between a cloud of 21 bubbles using 3Dy-
naFS on a Cray. Two planes of symmetry are used. Each bubble has 102 nodes and 200 panels.

a) Growth. b) Collapse.

Iine. In order to address such a problem, the program SDynaFS is being modified

for effective implementation on a supercomputer. One of the difrculties of such a

study is the required large number of discretization points, which prevents lengthy

simulations on typical memory and speed limited computers. Figure 18.5.5 shows
the behavior of a field of bubbles in the absence of a vortex field, run on a Cray
machine. In the case. shown in the figure, two planes of symmetry were assumed
to minimize computational times. In the presence of a vortex line, use of such
a symmetry is not warranted since, due to the varying rates of rotation of each
bubble in the vortex field, the symmetry is not preserved during the bubble motion.
In addition, due to the high shear rates that bubbles can experience, a relatively
large number of discretization points is needed to describe each bubble.

Figure 18.5.6 shows the case of a 5-bubble configuration in the flow field of

a line vortex. This run has the advantage of including both vortex/bubble and
bubble/bubble interactions. All five bubbles are chosen such that in absence of the
vortex flow field, the pressures inside and outside each bubble are the same and
equal to 0.74 atm, p;lp* - 1. The viscous core radius and the circulation are again
chosen to be in the same ranges as those in the experiments described by Maines
and Arndt (l-993), and Green (1991). The viscous core is chosen to be R.:2.2mrn,
while | - 0.1573 rn2 f s, O - 0.872. The initial bubble centers are selected to be
on OY axis at the coordinates: Y : 0, 2r3r4 and 5 rnrn. The vortex fine is parallel

to the OX axis and is centered on Y - 1.5 trLTrL. As a result, bubbles 1, 2 and 3
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Figure 18.5.6 Dynamical behavior of 5 bubbles in a vortex line flow - bubble contours at varioue
times. The vortex line is perpendicular to the page and centered on Y : l.\nm. R" : 2.2mrn,
f - 0.15?3rr'�z /s. O : 0.8?2. All bubbles have oo : l}}p|nr,..

are initially located in the viscous core, while bubbles 4 and 5 are located in the
inviscid flow region. All five,bubbles considered have an initial radius of t00 1tm.
Figure 18.5.6 shows contours of the bubbles as they rotate around the vortex axis
at various times. This figure clearly shows the presence of a nonuniform flow field.
Indeed, bubble 3, which is the closest to the region of highest angular velocity of
the ' basic flori is seen to swirl around the vortex center at the fastest rate, while
bubble 2, which is the closest to the vortex center, is seen to practically rotate
around itself. Similarly, the highest shear is seen to occur close to the viscous core
edge where the pressure gradients and their variations are steepest.

Since all bubbles were chosen to have the same initial radius and internal pres-
sure, the natural period of oscillation of each of the selected bubbles increases with
the proximity to the vortex ucis. As a result, the farthest bubble from the a:cis,
Bubble No. 5, collapses first while stretching and deforming, In order to be able to
continue the computation following break up of a bubble, that bubble was removed
and the computation was continued with the bubbles left.

Figure 18.5.7 shows two three-dimensional views of the bubbles before the col-
lapse of bubble 1. These views enable one to have a better idea of the bubble shape
deformation and elongation during the capture phenomenon.

Figure 18.5.8 is a previously unpublished photo of a bubble in the viscous core of
the trailing vortex of a hydrofoil (see Green (1991) for details of the experiment).
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Figure 18.5.7 3D bubble shapes in the vortex line flow field of Figure 18.5.6 before collapse of
bubble No. 1. View ftom (a) OZ axis, (b) OX axis.

The photograph is a double exposure, the time of separation between the two
pictures being 150 pcs. The three bubble shapes in the top of the figure are aligned
along the axis of the vortex. The diameter of these shapes is of the order or 200
p,m. The bottom two shapes are those of the same bubble at two instants in
time separated by 150 ps, and illustrate very clearly the large deformations of the
bubble during its capture by the vortex. As in the numerical simulations presented
above, this behavior appears to be related to the large shear stresses experienced
by the bubble while, approaching the vortex axis. In the first of the two pictures
the bubble is very elongated due to shear, while 150 prs later, it appears to have
grown in size, due to the pressure drop in the vortex, while conserving a strong
deformation on its downstream surface.

XVI[.5.+ Bubble on Vortex Axis

Let us now consider the case where the bubble is placed at the vortex axis at
t = 0 and starts to grow due to the difference between the internal pressure and
the local ambient pressure. Such a problem was considered earlier by Crespo et al.
(1990) who studied the dynamics of an elongated bubble. Unfortunately, his model
neglected essential elements in the bubble/line vortex dynamics: i.e. the presence
of an azimuthal velocity flow field, a rotational and viscous flow, and a pressure
"well" on the axis. Crespo obtained a strong jet which initiated at both extreme
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Figure 18.5.8 Double exposure photo of a bubble in the viscous core of l[6 flniling vortex of a
NACA 66-209 hydrofoil (see Green 1991). Time of separation between two exposures -150 pa.
Scale 170 pnf cm, The three bubble images at the top are of bubbles on the vortex centerline.
The two images at the bottom are successive images of one bubble being driven by the centripetal
pressure gradient onto the vortex centerline. R": 6.Ex106, T --0.232rn2 f t.Cowtesy of Professor
S. I. Green, UBC, Canada.

points of the bubble along the axis of symmetry. As shown in Figure 18.5.9c such
a behavior is reproduced using the program 2DynaFS when the vortex flow field
is neglected. However, the opposite effect is in general observed when the rotation
in the vortex flow is included. Figure 18.5.9b illustrates this for particular values
of the circulatiotr, I, (or the swirl parameter, 0) and the normalized core radius,

E - n"f R^o* Modifications in the results when O and R. ^r" changed are
discussed in the following paragraph.

In both cases shown in Figures 18.5.9a and 18.5.9b, the initial bubble shape
elongation ratio (the ratio of bubble length to radius) was three. It is clear from
the comparison that the swirl flow has a profound effect on the bubble dynamics.
Bubble surface portions away from the vortex axis experience much higher pres-
sures than bubble surface portions on and close to the vortex axis, and therefore
move much faster during the collapse phase. This difference in collapse rate gen-
erates a constriction in the mid-section of the bubble instead of the sharp jets on
the axis shown in Figure 18.5.8. The hourglass-shaped bubble then separates into
two tear-shaped bubbles.

In Figures 18.5.10&- c, the dynamics of initially spherical bubble positioned at
t : 0 on the vortex axis are studied. The initial internal pressures inside the bubbles
are taken to be larger than the pressure on the vortex axis, and the bubbles are
left free to adapt to this pressure difference. The figures indicate that the bubble
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(b)

xlao

Figure 1E.5.9 Comparison between the contours of an elongated bubble during its collapse in the
absence and in the presence of gwirl. Initial elongation ratio of 3.p*lp;:3.27. a) No swirl. b)
n - 0.56. R.f R^nn - 3.
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Figure 18.5.10 Bubble dynamica on the axis of a vortex line. Left side shows 3D shapes at selected
tT..g.Right side shows bubble contours at increasing times. I = 0.005*'/", Ro: l11prn.
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Figure 18.5.11 Bubble collapse between two solid parallel platee resulting in the formation of an

hourglase-shaped bubble and a line vortex perpendicular to the two plates.

Figure 18.5.12 Cavitation bubble shapes observed at the exit of a vortex tube.

.''t'-Esffi.
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behavior depends significantly, for a given rralue of the swirl parameter, 0, on the
normalized core radius El. tn all cases where the bubble maximum radius, R^o,,
is larger than .R. it appears that the bubble tends to adapt to the vortex tube
of radius .R". This could lead to various bubble shapes, as shown in the following
figures, ending up with a very elongated bubble with a wavy surface for large values
of. Rn orf R..

Figures 1.8.5.104 - c show bubble contours at various times during growth and
collapse for increasing values of the core radius, .R", and decreasing values of p;lp*.
Also shown are selected 3D shapes of the bubbles at narious times, which have the
advantage of being much more descriptive. It is apparent from these figures, that
during the initial phase of the bubble growth, radial velocities are large enough to
overcome centrifu$al forces and the bubble first grows almost spherically. Later on,
the bubble shape starts to depart from spherical and to adapt to the pressure field.
The bubble then elongates along the axis of rotation. Once the bubble has exceeded
its equilibrium volume, bubble surface portions away from the axis - high pressure
areas - start to collapse, or to return rapidly towards the vortex axis. Points near
the vortex axis do not experience rising pressures during their motion, are not
forced back towards their initial position, and continue to elongate along the axis.
As a result, a constriction appears in the mid-section of the bubble. The bubble
can then separate into two or more tear-shaped bubbles. It is conjectured that this
splitting of the bubbles is a main contributor to cavitation inception noise. This
behavior is very similar to that observed for bubble growth and collapse between
two plates (Chahine 1989), which results in the formation of a vortex line (Figure
1 8 . 5 . 1 1 ) !

Keeping O constant while reducing the vortex core size R" has the effect of
steepening the radial pressure gradient along the bubble surface and increasing the
rotation speed inside the viscous core. These effects increase the centrifugal force on
the fluid particles closer to the vortex axis, which in turn increases the elongation
rate of the bubble and results in more and more complex shapes of the elongated
bubbles. The bubble can then become subdivided into three, four, or more satellite
bubbles during the collapse. The elongated and wavy shapes obtained have been
observed in unpublished tests that we have conducted on cavitation on the axis'of
the vortex forq'ed in a vortex tube (Figure 18.5.12).

XVIII.5.5 Bubble on Vortex Axis Near a Wall
Figures 18.5.13o - c show the collapse of a bubble trapped in a line vortex per-
pendicular to a solid wall at various distances from this wall. The boundary is at
U : 0 and its distance to the initiat bubble center, L, is normalized with n^o,.
The presence of the wall is accounted for by the incorporation of an image bubble.
The uneventful growth phase ends with the elongated spheroid shaped contours
shown at the center of each figure. Then, the overall bubble behavior appears to
be similar to that in absence of the wall; namely, bubble elongation along the
axis followed by a splitting into two bubbles. The presence of the wall is felt by
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(') (b)

0 2 4 6 8 1 0
Vortex Axis of Roation

( . )

Figure 18.5.13 Influence of solid wall distance on bubble collapse in a line vortex. O : .4?5,
p;/p- - 584, ac : 1.18. z) Lf R*"" - 4; b) Lf n^." : 3; c) Lf R^"" = 2.5.

Figure 1E.5.14 Influence of O on the motion of bubble axial and longitudinal dimensions versug
time for a bubble trapped in a line vortex perpendicular to a solid wall. Distances are normalised
with .R,,"., and times are normalised with the Rayleigh time. p;lp- - 584, a"/R,,.o,n - 0.4,
Lf R^n - {.

an asymmetry between the two second.ary bubbles. In all cases, computation was
stopped at bubble splitting. A special treatment to the bubble shape discretization
needs to be done after that point (panel removal) and is being implemented. It
is speculated, based on previous bubble dynamics observations, that very strong
jets that will bring back the two pointed tips (in the splitting region) of the two
secondary bubbles will be generated following bubble splitting. This phenomenon
is expected to be stronger for the secondary bubble close to the wall since that
bubble has a much more elongated tip.

Figure 18.5.14 shows the influence of the circulation parameter, f), on the bubble
behavior for fixed values of the core radius and the distance to the wall. This figure
contains significant information on the scaling of bubble behavior in a vortex flow.
Three characteristic dimensions of the bubble are shown as a function of time.
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These are the bubble radius along the plane perpendicular to the line vortex, R'.,
and the distances between the initial bubble center and the two extreue points on
the vortex a:cis, Z^(L) and Zn(L00). Figure 18.5.14 shows time variation of these
three quantities normalized with R^or. Time is normalized with the Rayleigh time
based on Jt ro, and the pressure difference between Poo and the pressure on the
vortex axis. It is apparent from this figure that .R. follows the classical Rayleigh
model. Va^riations of O between 0.1 and 0.94 mofify the normalized bubble period
by less than 10 percent. One should notice, however, that bubble period is here
defined as the time needed for the bubble to subdivide into two secondary bubbles,
and that no bubble surface instability, &s described earlier, occurred in that case.
Bubble elongation, on the other hand, depends strongly on O, as can be seen from
the Zn curves. The elongation of the bubble part close to the wall is seen to be
affected for large values of O.

XVIII.6 Validation Study: Bubble
Interaction with a Vortex Ring

XVIII.6.1 Experimentd Study

In order to validate the numerical studies on bubble/vortex interactions, a fun-

damental experimental and numerical study was conducted. This consisted of the

controlled obserrration of the interaction between a vortex ring and a bubble. The

results of the experiment were then compared with those obtained with the 3D

free surface dynamics numerical code SDynaFS described above (Chahine et al.

1993a).
A vortex ring was generated in a Plexiglas taak using a cylinder equipped with

a 2.5 cm radius piston. The cylinder has an sharp lip exit to enhance the roll

up of the fluid vortex generated at the lip. This results in a vortex ring with a

diameter slightly larger than that of the cylinder (Kalumuck and Chahine 1990).

The water in the tank is degassed using a vacuum pump and a spark generated

bubble is produced using two tungsten electrodes submerged in the tank which can

be manipulated from outside the tank to be placed where desired. The spa,rk is
produced by discharging during a very short time period (- 10-as) a high voltage

(6000 volts) from a series of capacitors. The interaction between the generated ring
and bubble was then observed. A spark generating the bubble has the advantage

of simulating cavitation bubbles and allowing one to choose precisely when and

where the bubble is generated, which is essential to coordinating the positions of

the bubble and the ring, and the starting time of a high speed carnera. A triggering

line allows one to synchronize the departure of the piston and the triggering of

the spark generator using pre$sure transducers to precisely detect the vortex ring

motion. As the piston sta,rts to move down, a pressure pulse is created in the

tank by the fluid impulsive motion. This is detected by the transducer probe and
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Figure 18.6.1 Particle trajectory around the ring viscous core.

amplified to trigger a delay generator. The output signal (a very short pulse) then
triggers the spark generator. Visualization was performed using a IrycAM ll high
speed camera capable of 1L,000 frames per second.

On several of the motion pictures taken very small gas bubbles were present
under the piston. The visualization of the motion of these bubbles allows one
to observe their trajectory around the vortex ring. The existence of a "viscous

core" was apparent from the velocity profile obtained by tracing the microbubbles'
motion, whether or not the vortex ring was cavitating. For the cavitating cases, the
"viscous core" surrounded the \raporous/gaseous core. A typical trajectory of the
small bubbles is shown in Figure 18.6.1. Also shown in this figure is a sketch of a
bubble and the particle trajectory line (T). Figure 18.6.1 also shows the geometric
characteristics of the bubble/ring positions. D1 is the distance between the bubble
center and the viscous core center when the bubble is at its maximum volume and
has the equivalent maximum radius .E-or. D2 is the horizontal distance between
the bubble and the center of the viscous core. The normalized quantities D1 =
DtlR',r* and Dz : DzlR^.* characterize the bubble/vortex ring interactions. As
expected, it is observed that smaller Dl and ,Dz correspond to stronger iuteractions
and larger bubble d.eformations.

Figure t8.6.2a - c drawn in the ring reference frame shows the bubble motion
and deformation with time for three selected cases of increasing bubble/shear
interaction. The electrodes position shown on each graph is the one at the instant
of the spark generation. The vortex ring side view indicates the position of the
reference frame.

As can be seen from the pictures in Figure 18.6.3o and from the contours in
Figure 18.6.4o, the bubble remains practically spherical during its growth. The
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interaction is weak due to the relatively large distance between the bubble and the
ring, and also due to the relatively small circulation of the ring. The first collapse
is too fast, and no significant deformation of the bubble is seen until the rebound
when a re-entrant jet appears on the bottom face of the bubble followed after
the rebound by an outgoing jet on the top face. It appears that during the first
bubble oscillation period the bubble translation velocity is smaller than the vortex
generated fluid velocity. The bubble therefore sees a flow moving upward. The jet

direction (including the re-entrant and the outside jet) is on a pathline of shear
f.ow, and the bubble motion after the collapse follows a particle path line while
oscillating and cutting itself in two.

In Figure 18.6.3b the bubble first grows spherically, then it starts to stretch into
an ovoid shape: the bottom face is less curved and the top face is more curved than
in the spherical case. Here the distan ce Dr is not too different from the previous

case but the circulation in the vortex ring is about three times larger. When
the bubble volume decreases, the stretching due to the shearing action becomes
more pronounced and a constriction along the bubble periphery appears along the
pathlines (?). The bubble then rebounds with a dumbbell shape

In Figure 18.6.3c the bubble appears to be stretched more and more in the
direction of the pathline during its growth, with the top region more stretched than
the bottom one, and the top right part growing more than the left one. When the
bubble collapses, its left side continues to be sheared by the flow into a pathline
direction and a tbeakt forms at the top left part and becomes more pronounced
once the volume of the bubble starts to decrease. Then, there is a constriction
all around the bubble which appears first on the top face of the bubble. The
bubble then cuts itseU in two and rebounds as two side-by-side distorted bubbles
(or bubble clouds). The left one then touches the cavitating ring and splits again
into two parts. The deformations of the bubble are more significant in this case
than in the two previous cases, because the bubble is,closer to the center of the
ring core aad experiences a strong shear flow. In addition, there appears to be,a
"venturi effect" between the bubble and the viscous core that further increases the
stretching of the left part of the bubble.

Within the margin of errors of the measurements, comparison of the time varia-
tion of the average radius of each bubble shows no significant effect of the presence
of shear on the bubble period. However, indications of a lengthening efiect of the
bubble period can be seen in the characteristic distances between the bubble 'cen-

ter' and the two upstream and downstream points, along a particle pathline. This
effect, however, seems small in the cases presented here and should be investigated
further.

XVIII.6.1.1 Physical Explanations
The obsenrations made above can be qualitatively understood by considering the
velocity and pressure fields around the bubble. The motion of each point on the
surface of the bubble is the result of the combination of the underlying (shear)
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Figure 1E.6.3 High speed movie sequetrces of bubble/vortex ring interaction. a)Dr - 2.16,
-D,  
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fluid velocity and of the velocity due to the bubble growth or collapse. The effect
of the underlying fluid flow (whose characteristic speed is about 2mls) is minor
during initial bubble growth and later bubble collapse phases, but becomes most

important at the end of the growth and at the beginning of the collapse where
bubble wall velocities reach a minimum. Indeed, right after the spark generation,
the speed of each point of the bubble surface is very high (abofi 40mf s). It then
decreases to zero at about the maximum radius, and then increases during the
bubble collapse. For a bubble in a uniform flow, the existence of the flow influences
the bubble shape by producing a larger bubble growth in the downstream direction
and by flattening the bubble shape in the upstream direction. Later on, due to
inertia, the downstream part that has extended further collapses faster forming a
re-entrant jet directed upstrea,m in the plane of symmetry of the bubble.

When the flow is not uniform, a similar phenomenon occurs but is stronger on
one side of the bubble than on the other due to the typical asymmetry of a shear
flow. In addition, the possibility that the underlying shear flow becomes, at some
point during the bubble historS stronger than the bubble wall velocity creates the
possibility of a jet generated by the underlying flow, which can be opposite to the
one described above and directed downstream. In the case of the figures shown
here, the velocity profile seen by the bubble decreases from left to right. When the
bubble starts to grow, the speed of each point is much more important than the
velocity of the fluid flow: the bubble is therefore almost spherical. Then, when the
speed of each point decreases, the influence of the fluid flow increases. The top
part of the bubble gro#s more than without the presence of the basic flow and,
due to the shear, the left part grows more than the right. In addition, the top face
is more stretched than the bottom face because on the top face the speeds add up,
while they subtract on the bottom. The opposite is true during the collapse where
velocities add up on the bottom part of the bubble and subtract on the top.

As the fluid flow moves upward in the case shown in the figure, the re-entrant
jet is expected to appear on the top face. However, due to the strong shear, the left
part of the bubble is prevented from collapsing. This in turn forces a compensating
middle-of-the-bubble constriction, with a tendency to form re-entrant jets on both
ends of the bubble along the pathline. This constricted shape of the bubble is
similar to that obtained with a bubble collapsing between two walls.

XVIII.6.2 Numerical Modeling

In order to model the bubble/shear flow interaction described above, the Boundary
Element Method (BEM) code described above, $DynaFS, was used. The flow field
of the moving vortex ring was modeled using the following classical expression for
the velocity potential at the point M produced by a vortex ring (R):

T  f  f  e t . p M ,6@)=-*J/16a""
5p

( 1 E . 6 . 1 )
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where Sn is any surface limited by the vortex ring line (R), and es is the tangential
direction along (7l'). This enables one to determine the velocity and pressure field
outside of the viscous core region of the vortex ring.

Figure 18.6.4o - c shows simulation results for the same conditions as the ex-
periment of Figure 18.6.3c. As in the experiment, Figure 18.6.4c shows elongation
of the left side of the bubble in the shear flow direction. The formation of a beak
at the end of the bubble growth is also evident but not as pronounced as in the
experiment. Later a constriction in the bubble shape along the fluid pathline is
also apparent. The overall comparison between this numerical modeling and the
experiment is encouraging. However, the strong shearing effect on the beak, which
prevents the bubble top from collapsing from the left side, is not definitively re-
produced in the numerical simulation. This discrepancy is probably because the
simulation neglected the vortex bubble ring behavior and did not include any mod-
ification of the flow due to the growth of the ring bubble near the spark-generated
bubble, creating the venturi efiect we mentioned earlier.

At the smaller circulations, the tendency of the bubble to elongate and then
cut itself into two is also clearly apparent, as in the experiments.

(b)

(.)

(.)

{,c}l a.@t {.0r3 4qr5 0.6 .oart oM oErt {.66 {-oas {.0t3 4.@3 o8t aori o@l o.cl!

Figure 1E.6.4 Numerical aimulations of bubble/vortex ring interaction. Dr = 1.1, D2 : 0.37,
Vino: g.EAmf t.  a) f  -  0.025m2f e; b) f  :  o. l0m2/a; c) I  -  o.tzrnzfr,  which corresponds to
Figure 18.6.3c.
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XVIIT.T Other Relevant Studies
One other relevant aspect of bubble/vortex interactions concerns the case where
the gaseous phase or cavitation is so developed that the vortex center is filled with
gas or vapor. The dynamics of such cavities have been considered in the particular
cases of cavitating vortex rings and well developed tip vortices. As for the studies
presented above, various simplifying assumptions were made by the various authors
in order to address these problems. For the sake of brevity we will not consider
these studies here. However, we refer the readers to the following publications
on cavitating vortex rings (Chahine and Genoux 1983; Genoux and Chahine 1984;
Chahine and Kalumuck 1988; Kalumuck and Chahine 1990). Concerning elongated
developed tip vortices, the readers can consult the following publications (Bovis
1980a; Ligueul and Latorre 1"989; Ligneul 1989). Current activities in the dynamics
of bubbles and mixing layers include work by Reutsch and Meiburg (1991), Kumar
and Williams (L991), Rightley and Lasheras (1991), Dvila-Martin et at. (1991), md
Stewart and Crowe (1993).

XVIII.S Fbll Viscous Interaction Between a
Cylindrical Bubble and a Line Vortex

One weakness of the numerical approaches presented above is the fact that, while
the influence of the flow on the bubble was fully accounted for, the modification of
the flow by the bubble's presence and dynamics was restricted to the case where
the 'bubble flow'was potential (see $a.3). In the present section, we will remove
this restriction in the simple but interesting case of the interaction between a
cylindrical bubble and a line vortex. This corresponds to cases such as described
in the previous section, where the line vortex has the central part of its viscous
core gaseous or vaporous. As illustrated below, such an analysis is important to de-
termine criteria for unstable bubble growth (cavitation inception), and to describe
how bubble dynamics affects the viscous flow itself. To do so, we consider the case
where an axisymmetric elongated bubble of initial radius oo is located on the axis
of a fully viscous line vortex. For illustration, we consider the case where, at t = 0,
the vortex line is a Rankine vortex. Flom there on, the vortex diffuses with time
and interacts fully with the bubble. The generated flow satisfies the axisymmetric
incompressible Navier-Stokes'equations in cylindrical coordinates. With all deriva-
tives with respect to z and 0 being null, the continuity and momentum equations
reduc'e to:

(18 .8 .1 )

(18 .E .2 )

l*o'*) =o

* *'.# -+:+#+'*lifir'*l
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(18.8.3)

(1E.E.4)

?ua ?ue rhue

a t  + w  *  +  r

Denoting the rad.ius of the bubble as a (t) , and its time derivative, i (t) , the
continuity equation leads to:

1 r . t : o ( t )  
3  ( t )

r

Replacing u, by its expression in (18.8.2) *d (13.8.3) one obtains:

iF E+z'-u|-+lLop
p 0 r

li*,r",,1

-"*[]$t'*r]

(1E .8 .5 )

(ra.a.o)

This set of coupled equations allows one to d.escribe both the bubble dynamics and

flow field modification with time accounting for the interaction with the bubble.

XVIII.8.l Method of Solution

In order to obtain a differential equation for the bubble radius variations, similar

to the Rayleigh-Plesset Equation (18.3.15), Equation 18.8.5 is integrated betwee't

r - a(t) and a very large radial distance r = R*, beyond which the vortex flow is

assumed to be that of an inviscid line vortex of circulation I. This integration leads

to a term containin E a2e.In order to obtain this term, a space and time integration

of Equation 18.8.6 is needed. This is obtained using a Crank-Nicholson fi,nite dif-

ference integration scheme applied to Equation 18.8.6. To apply this scheme, the

domain of integration is made time independent using the variable change,

- (ra.a.z)

The integration region becomes for all times [1;"-] , with R-(f) - a(t)soo. With

o, 3 koo*n at a given time step through the solution of Equation 18.8.5, Equation
18.8.6 becomes:

(18.8.8)

with

(18 .E .e )

T u e  ,  o &  ( l u e  ,  
, r r r \  

_ . . A
E

t = o ( 4

3)
o o o

D w  t i t r t  ; M  i - ,  t  L  ( a z u e , L o u e
E - -  a  o ' - - a '  " z u u e *  r , * a , \ 7 ' , ' ; a '

R " : 9
u

a = t [P*a - -  t - - r t :
ao  coV e
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Similarly, Equation L8.8.5 becomes:

s 2

aro+*'= r-L**tt-*+r] +# 1,'*-*0"
1  f -  (  T  \ '  / L \ 2 k  L  2 i i l  , -  - ^-Fr"1*1 

Lt- 
(.frJ -n+-n*\;) - w.d-ff i) (raaro)

with

r= ! , [+  n -#  E=X w. -+  ( raar r )
XVIII.8.2 Initial and Boundary Conditions

The initial conditions considered are as follows. For the bubble,

(g )2k  -o  +zuo i t -@)P ( " ) : p o * p c " \ a l  
( r  

. r  
0 r

a ( o ) - o "  & 1 0 ;  - o (18.8. r .2)

For the line vortex, the equation at t - 0, is that of a Rankine vortex as described
in $I.1.1, with

u , ( r , t  -  0 )  :  0  ( f  A .a . f  S )

In addition, the following boundary condition, similar to Equation (18.4.4), is
imposed at the bubble interface:

(1E.s .14)

where p is the dynamic viscosity, and the gas compression law is given by:

( 1 E . E . 1 5 )

In addition, the following condition at infinity is imposed on the pressure at the
distance, R;4 :

Pg:0," (+)'-

( r .8 .8.16)

XVIII.8.3 Some Preliminary Results

Figures 18.8.l-a and L8.8.Lb illustrate both the bubble/vortex flow field interaction
and a case where there is a need to include this full interaction in the dynamics.
In these two figures, the bubble has an initial radius of Lrnm, while the viscous
core of the vortex has an initial radius of tcrn. The initial circulation in the vortex
is 0.5 *2 I ", and the initiat pressure in the bubble is 5 x 103 Pa, while the ambient
pressure is 1".3x105 Pa. Therefore, the bubble starts its dynamics by collapsing.
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Fisure 1E.8.1 Dynamics of theinteraction between acylindrical bubble and aline vortex. I - 0.5

*t/r, Poo:lxi}lPa, P*:1.3x105Pa. a) Bubble radius, value of maximum azimuthal vdocity

110mrrr and position of Re-"r.b) Bubble radius versus time with and without viscous interaction.

Figure 18.8.1a shows three characteristic quantities of the problem versus time. The

first quantity is the bubble rafius versus time, while the other two quantities are

the maximum azimuthal velocity, ll1rnaxt and the radial position, B0-"r, at which

this velocity occurs:, In. the previous sections, these two last quantities remained

constant with time. A very important first result clearly shown in Figure l-8.8.1a

is that both the position of R1r'^r*, and the value of us*"", depend directly on

the variation of "(t). The viscous core (of radius fto-"*) is seen to decrease with

the bubble radius during bubble collapse, and to increase with the bubble radius

during bubble growth. This tendency of the viscous core to get displaced with the

bubble waJl corresponds to intuition, but is proven numericallY, to our knovvledge,

for the first time here and in Desgrees du Lou et at. (1993).

Viscous effects appear more prominently when following the bubble dynamics

over more than a single period of oscillation. Both manimum values of .Rg-o' and

ll1star are seen to decrease with time. Through conservation of momentum, the

azimuthal velocity follows a tendency opposite to that of the core size. As the

bubble wall moves inward the viscous core shrinks, simultaneously increasing the

tangential velocity to a maximum when the bubble reaches maximum size. As the

bubble grows again, the core expands and the tangential velocity decelerates to

a minimum at the maximum bubble radius. When the fluid particles are pulled
'in 

towards the vortex axis they accelerate tangenti"lly. This is similar to the phe-

nomenon of vortex stretching .

. Figure 18.8.1b shows the importance of the inclusion of full viscous flow/bubble

interaction in the dynamics. One graph in the figure considers the case where the
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underlying flow field is forced to remain that of a Rankine vortex. In that case'

as apparent in the figure, the bubble oscillations are repeatable with time, and

no viscous decay of the amplitude of the oscillations is visible. In contrast, when

the underlying flow is modified through viscous diffusion and interaction with the

bubble, the bubble radius oscillations decay substantially after the first collapse,

and the flow field characteristics are modified as shown in Figure 18.8.1a.

Figures 18.8.2a and L8.8.Lb show, respectiveln the influence on the dynamics of

the initial gas pressure inside the bubble, Psol and the ratio of initial core radius

to initial bubble radius, R"lao. For an initiat pressure on the vortex a:cis of 7xL05

Pa, Figure L8.8.2a shows the dynamics of the bubble and the viscous core size

when the initial pressure in the bubble decreases from 5x105 Pa to 1.5xL0s Pa.

For Poo = 5x105Pa the bubble collapse is very weak, and the core radius is seen

to follow the bubble wall oscillations. For all three smaller rnlues of Pso, beginning

with Poo =4x105 Pa, the bubble collapse is strong enough to cause the viscous

core to practically disappear (maximum azimuthal velocity at the bubble wall)

during the later phases of the bubble collapse. This is followed by a much stronger

rebound of the viscous core than the bubble rebound.
Figure 18.8.2b shows a behavior similar to the previous figure when the ratio,

R.loo, increases. Here again a strong core collapse and rebound is observed when
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the initial distance between the bubble wall and the core radius is decreased.

XVIII.9 Conclusions
The study of bubble/vortex interaction is rather complex and is a subject of great

interest. Due to the fiffculties involved in both experimental and analytical ap-

proaches, the trend has been to address the problems by a two-pronged effort

involving numerical and experimental simulations. The studies presented above

addressed various aspects of the interaction problem, namely bubble capture by

the vortex and bubble dynamics in the vortex flow field. Very much lacking and

presently a subject of active work at our research center is the influence of the

bubble's presence on the vortex behavior. It is hoped that combining a viscous

solver, at least in the vortex viscous core region, with a bubble dynamics solver,

such as 2DynaFS or SDynaFS, would enable one to describe with some accu-

racy the full interaction between the bubbles and the vortex flow field. This is of

great importance since it would enable one to understand the mechanics involved,
p"i""tirlly enabling oo"'to manipulate the phenomena for technological ad.vantage

such as bubble drag reduction or cavitation inception delay.
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